Skip to content

TRACE Project

FInd our publications in the TRACE Zenodo Community

Publications

Publications in Conference proceedings

    1. Long, C. Anagnostopoulos, S. P. Parambath, and D. Bi, ‘FedDIP: Federated Learning with Extreme Dynamic Pruning and Incremental Regularization’, 2023 IEEE International Conference on Data Mining (ICDM). IEEE, pp. 1187–1192, Dec. 01, 2023. doi: 10.1109/icdm58522.2023.00146. Zenodo link: https://zenodo.org/records/14748579
    2. Puthiya Parambath, S. A. , Al-Fahad, S. A. M., Anagnostopoulos, C. and Kolomvatsos, K. (2024) Sequential Block Elimination for Dynamic Pricing. In: The 2nd International Workshop on Data Mining in Finance (DMF 2024) at the IEEE International Conference on Data Mining, Abu Dhabi, United Arab Emirates, 09-12 Dec 2024. Zenodo link: https://zenodo.org/records/14748975
    3. Papachristopoulou, Th. Anagnostopoulos, K. Fragkos, I. Mesogiti, G. Limperopoulos, E. Theodoropoulou, and K. Kolomvatsos. TRACE: a Reference Architecture for Intelligent Logistics Operations in B5G Networks. Accepted for publication in 21st International Conference on Artificial Intelligence Applications and Innovations (AIAI 2025). Zenodo link: https://zenodo.org/records/15326746
    4. Eleftheriadis et al., “Neural Cryptanalysis of Lightweight Block Ciphers Using Residual MLPs,” 2025 IEEE International Conference on Cyber Security and Resilience (CSR). IEEE, pp. 936–943, Aug. 04, 2025. doi: 10.1109/csr64739.2025.11130149 Zenodo link:  https://zenodo.org/records/17491759

Article in Journals

    1. A. Puthiya Parambath, C. Anagnostopoulos, and R. Murray-Smith, ‘Sequential query prediction based on multi-armed bandits with ensemble of transformer experts and immediate feedback’, Data Min Knowl Disc, vol. 38, no. 6, pp. 3758–3782, Aug. 2024, doi: 10.1007/s10618-024-01057-4. Zenodo link: https://zenodo.org/records/14747579
    2. Papakotoulas A, Mylonas T., Panagidi K., Hadjiefthymiades S., Optimizing IOT Security via TPM Integration: An Energy Efficiency Case Study for Node Authentication, ITU Journal on Future and Evolving Technologies, Volume 5, Issue 1, March 2024, ITU, ISSN: 2616-8375. Zenodo link: https://zenodo.org/records/15542391
    3. T. Aladwani, C. Anagnostopoulos, and K. Kolomvatsos, ‘Node and relevant data selection in distributed predictive analytics: A query-centric approach’, Journal of Network and Computer Applications, vol. 232, p. 104029, Dec. 2024, doi: 10.1016/j.jnca.2024.104029. Zenodo link: https://zenodo.org/records/14747849
    4. A. Koukosias, C. Anagnostopoulos, and K. Kolomvatsos, ‘Task-Aware Data Selectivity in Pervasive Edge Computing Environments’, IEEE Trans. Knowl. Data Eng., vol. 37, no. 1, pp. 513–525, Jan. 2025, doi: 10.1109/tkde.2024.3485531. Zenodo link: https://zenodo.org/records/14748848
    5. S. P. Parambath, C. Anagnostopoulos, and S. A. M. Alfahad, ‘Thompson sampling-based recursive block elimination for dynamic assignment under limited budget in pure-exploration’, Data Min Knowl Disc, vol. 39, no. 1, Dec. 2024, doi: 10.1007/s10618-024-01083-2. Zenodo link: https://zenodo.org/records/14747694
    6. Vrani, A., Apostolidis, S. D., Kapoutsis, A. Ch., & Kosmatopoulos, E. B. (2025). Delivering data: A real-world dataset for last-mile delivery optimization. Data in Brief, 61, 111762. doi: 10.1016/j.dib.2025.111762 Zenodo link: https://zenodo.org/records/15672291
    7. ALFahad, S. P. Parambath, C. Anagnostopoulos, and K. Kolomvatsos, “Node selection using adversarial expert-based multi-armed bandits in distributed computing,” Computing, vol. 107, no. 3, Mar. 2025, doi: 10.1007/s00607-025-01443-w.
    8. Pentek and T. Letnik, “Obstacles and Drivers of Sustainable Horizontal Logistics Collaboration: Analysis of Logistics Providers’ Behaviour in Slovenia,” Sustainability, vol. 17, no. 15, p. 7001, Aug. 2025, doi: 10.3390/su17157001 Zenodo link: https://zenodo.org/records/17432999
  1.  

Whitepapers

Blockchain in Logistics: A Protocol Selection Guide

Enhancing Transparency, Efficiency, and Security for a Sustainable Supply Chain